The Effect of Water Environment on the Psychosomatic Development of Babies

© Copyright 2002 by Igor V. Smirnov, Ph.D. and M.S., USA

Abstract

Childbirth in water was first conducted in 1970s by the method devised by the Moscow researcher Igor Charkovsky. By now hundreds of children have been born in water environment. Follow-up observation on these children has shown that their psychosomatic development is considerably ahead of the standard integral characteristics. ‘Water babies’ begin to stand up and move about the age of 2-3 months; they understand the meaning of speech symbols much earlier than their coevals; they respond better to subsequent training, do not exhibit aggressiveness in their behavior, and they also display telepathic and other extrasensory abilities.

It is a scientifically-based fact that water plays an important role in the vital activity of living organisms. Water is an essential component of cells and it participates in the formation of physically active conformations of biopolymers, and also of the medium in which the principal metabolic reactions take place. Water molecules participate in cell communications and in principal metabolic functions. One of the main ideas of the method of childbirth in water is based on the scientifically proved ability of water to store and transduct (transformation of electromagnetic signals into biochemical signals) certain bioenergetic information to a living being immersed in it.

The Effect of Water Environment

During water delivery the effect of the force of gravity on the pregnant woman is reduced, so that she may relax better during the contractions and pain is also relieved. The main advantage is that childbirth in water enables a smooth and stress-free transition from a liquid environment (amniotic fluid) into another liquid environment. Under these circumstances there is no sudden exposure to the force of gravity on the unadapted newborn infant.

During childbirth in water the baby does not cry, but smiles. It indicates harmonious relations of the infant with the world that it has entered, and as a result of this, such a child has no negative aggressive tendencies. The first few minutes and hours of life of the newborn infant are tremendously important to his or her subsequent mental development. Dr. Jampolsky from St. Petersburg University, Russia showed in her scientific research that the psychological homeostasis of the child, formed during these first moments of life, is a unique matrix for subsequent development of mental functions. One of her investigations make a special point of interest. Dr. Jampolsky recorded the first cry of newborn babies delivered in the traditional way in hospital, and made a sonogram. Then she compared this sonogram with the sonograms of different physical sounds in the nature. She found out that the first cry of a baby resembled to the cry of a very angry adult person, indicating that the birth experience gave negative imprinting to the psychological homeostasis of a child. The process of water delivery and spending the first minutes of life in the water environment has another profound effect on the alteration of psychosomatic development of a child. Due to reduction of energy expenditure to overcome the force of gravity, and due to the impossibility of activating certain physiological functions of the newborn infant (breathing, crying, perception of sounds, smells, etc.), the introspective plane functions are activated and they undergo accelerated development.

According to the law of heterochronicity and inequality of the development of psychological functions, it is possible to control the activity of these functions using the method of selective sensory deprivation. By suppressing one psychological function this vital energy is conveyed to the development of another psychological function. For example, the famous English writer Jonathan Swift wore a bandage over his eyes to stimulate fantasy and imagination capacity. The monks of Russian Orthodox Church often gave a promise to keep silence for many years in order to receive enlightenment and an ability to
operate on the superconscious level of reality. Many Yoga exercises use breath-holding techniques to modify human psychic and physical capacities. The breath holding techniques promote the lack of oxygen and as a result the penthose metabolic system is activated. Penthose system in the human body is much older than that of oxygenation or Krebs system. The penthose way of metabolizing accumulates the energy in the organism, this closed system of metabolic process does not need oxygen, and there are no burning process and no chaotic loss of energy that leads to the expenditure of energy. On the contrary, the ordinary oxygenation system promotes burning of oxygen and secretion of heat, meaning chaotic loss of energy. The energy collected in the metabolic process is used for the development of introspective psychic functions and extraordinary physical capacities.

Water training in early childhood is the only way to teach a human being the breath holding techniques from the first days of life. The infant spends a large part of time in the water environment and learns to hold its breath, to feed and to sleep in water. This leads to a modification of the rates of development of the mental and somatic functions.

Modifications of Psychosomatic Functions

To shed light on this fact, children who took part in regular swimming from the first days of their lives were studied. This investigation was conducted at the Infant’s Hospital #10 with collaboration of Psychological Department of St.Petersburg University, Russia. This study was conducted on infants at the age of 1 and 2 years old, and it involved an examination of integral parameters of the rates of physical growth of the child and various parameters of cognitive functions, such as involuntary visual attention with or without the inclusion of a motor component, involuntary auditory attention, voluntary attention, pictorial and verbal auditory memory, classification of objects by shape and color, and imitative construction, characterizing the development of functions of attention, memory and thinking.

The integral parameter of the rates of physical growth of the child was 4 times higher in swimming children than in nonswimmers. Experimental results demonstrating marked acceleration and qualitative changes in the rate and character of development of mental functions are particularly interesting. The mean values of 5 of the 9 tested parameters show an increase in 1.5 - 10 times (in the initial units of measurement). The results are statistically valid with p between 0.95 and 0.99. The mean values of 4 parameters of the swimming children were actually a little higher than the maxima of the monthly averages for nonswimming children at the end of the second year of life (δM is between c0 and 1.2 σ0, where δM = M – M0 denotes the difference between the mean annual values of the parameters for swimming and nonswimming children, and σ0 the standard deviation of the scale estimate of the parameters for nonswimming children).

It can be concluded from analysis of the results of development of attention, memory, and thinking functions, based on a combination of parameters, that the mean values of these functions for 18-month-old swimming children virtually reach the maximal level of respective functions in nonswimming children at the end of the second year of life. In other words, children who swim during early development are about 6 months ahead of their coevals in their development.

Early swimming has the greatest effect in the second year of life on the development of thinking: not only quantitative, but also qualitative changes are observed under these circumstances in the course of evolution of the corresponding parameters. Nonswimming infants are virtually unable to do classification by shape and color before 1.5 years of age, whereas swimming children begin to classify objects and to respond adequately to the experimenter’s instructions after 13-14 months. Similar results were obtained with respect to parameters of audiovisual memory: children swimming early begin to respond monosyllables, and sometimes even words of two syllables after 12-14 months, whereas 95% of nonswimming children cannot repeat even monosyllabic words after the experimenter before the age of 1.5 years. This fact indirectly shows that the water environment promotes the earlier development of speech.

Correlation analysis showed the presence of much closer correlation in the development of cognitive functions in swimming children than in their nonswimming coevals: in the course of the year, the level of integration of correlation between functions increased by 2.2 times. Correlation pleads for swimming infants also form ring structures, including both positive and negative connections; whereas correlation pleads for nonswimmers are mainly close to linear in character and do not include any significant negative correlation. The results are statistically valid with p = 0.95. This suggests a clearer manifestation of the law of heterochronicity and inequality of development of mental functions in children who swim in early ontogeny, and acceleration of their mental development in accordance with this law.

Infants born in the activated water showed the best results in the development of psychosomatic functions. Activated
water is produced with the help of the patented non-chemical Molecular Resonance Effect Technology. The process of water activation induces the formation of water molecular clusters similar to water molecular structures found in living cells. The basic idea of Molecular Resonance Effect Technology is the direct transmission of prerecorded molecular activity signals to biological systems with the help of Activated Water. These messages are imprinted in water during the process of activation (see I.V. Smirnov’s ‘Activated Water’, in Explore! For the Professional Journal, Vol. 11, No.2, 2002). The effect of Activated Water on the body immersed in it can be explained by the fundamental physical phenomenon of electromagnetism, such as resonance and constructive interference.

REFERENCES

V.A. Ganzen and L.A. Golev, ‘Systematic Description of Human Ontogeny’ Journal of Psychology No.6, 1980
T. Bauer, ‘Mental Development of the Infant’ Moscow University Press, 1979
I.V. Smirnov, ‘Activated Water’ Explore magazine, vo.11, No.2, 2002